Impact Assessment: A tool to encourage and measure research translation and impact

Shanthi Ramanathan
Kim Edmunds

PHCRIS Conference
7-9 August 2017
Agenda

- Key definitions
- Why measure impact?
 - The problem, Policy shifts, Key initiatives
- Developments in Impact Assessment
- Criticisms of Impact Assessment
- HMRI FAIT
- Expressing the results
- WORKSHOP!
Key definitions

Research translation
... a process of knowledge generation and transfer that enables those utilising the developed knowledge to apply it. This definition acknowledges that, once generated, knowledge flows can be multidirectional and non-sequential.

Research impact
... the demonstrable effect from the flows of knowledge between basic, patient and population-orientated research, and clinical trials, that improves human health and quality of life, and generates benefits for the economy, society, culture, national security, public policy, or the environment. (i.e. a societal perspective)
Why measure impact?
Evidence of the problem

1. Expected consequence of funding health research => generate a positive impact
2. We want less disease, better care, and improved quality of life and longevity for Australians.
3. Flow of knowledge through the translational pipeline is not optimal.
4. Effective and cost-effective findings not being fully implemented by healthcare systems and not being appropriately used by others.
5. Finite HMR budget - not being spent efficiently or effectively.
Consequence of sub-optimal research translation is that health services and patients are not always using or receiving the most effective or cost-effective prevention or treatment.

Message from governments and major funders (ARC, NHMRC, MRFF, Cancer Institute) is that the ability to demonstrate research impact (as opposed to academic impact) is becoming exceedingly critical.

More and more, researchers must facilitate and demonstrate research translation & impact.
Key initiatives in Australia

• Excellence in Research for Australia (ERA)
• Advanced Health Research and Translation Centres Program (AHRTC)
• Medical Research Futures Fund (MRFF)
• ARC’s national engagement and impact assessment framework (EI)
• Centres for Innovation in Regional Health (CIRH)
Impact measurement—what’s been happening?
Impact Measurement

• Scoping literature reviews
 – What do existing frameworks aim to do?
 – What methods for impact assessment?

• Qualitative
 – Interviews with stakeholders – mainly in the Hunter
 – State & federal government views
 – Expanded to MRIs around AU
 – Attitudes to impact measurements, barriers and enablers; what is being done; what should be done
 – Broader engagements (NHMRC, ARC, MRFF, Brunel University (Payback), Karolinska Institute etc.)
What is the role of an impact assessment framework?
From the literature:

- Identified objectives grouped into eight (8) categories¹:
 - Top-down Accountability
 - Transparency / Bottom-up Accountability
 - Advocacy
 - Steering
 - Value for money
 - Management: Learning & Feedback
 - Measure / improve the speed of translation
 - Prospective orientation of a research project *****

Guiding principles for impact measurement

– Capture processes, outcomes and impacts generated across the spectrum of health research from discovery to applied science;
– **Encourage** research translation;
– Enable the implementation of improvement processes when research translation fails;
– Utilise cost-effective data collection techniques;
– Facilitate communication on research impact.
<table>
<thead>
<tr>
<th>YES</th>
<th>PARTIAL</th>
<th>NO</th>
<th>POSSIBLE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ACCOUNTABILITY</th>
<th>TRANSPARENCY/ACCOUNTABILITY</th>
<th>ADVOCACY</th>
<th>STEERING</th>
<th>VALUE FOR MONEY</th>
<th>MANAGEMENT/LEARNING & FEEDBACK/ALLOC.</th>
<th>SPEED OF TRANSLATION</th>
<th>PROSPECTIVE ORIENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BALANCED SCORECARD</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CAHS IMPACT FRAMEWORK</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CIHR IMPACT FRAMEWORK</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>COMPREHENSIVE RESEARCH METRICS LOGIC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DECISION MAKING IMPACT MODEL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ECONOMIC IMPACT ASSESSMENT (EIA)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EXCELLENCE IN RESEARCH FOR AUSTRALIA (ERA)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HEALTH SERVICES RESEARCH IMPACT F/WORK</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HMRI FAIT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ITHS KLM/WHO MODEL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LEAN/SIX-SIGMA MODELS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MATRIX SCORING SYSTEM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NHMRC MORIA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PAYBACK MODEL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PROCESS MARKER MODEL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RE-AIM MODEL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RESEARCH ENGAGEMENT FOR AUSTRALIA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RESEARCH EXCELLENCE FRAMEWORK</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RESEARCH IMPACT FRAMEWORK</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RESEARCH PERFORMANCE EVALUATION</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RESEARCH UTILIZATION LADDER</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SOCIETAL IMPACT FRAMEWORK</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TELETHON KIDS INSTITUTE RIF</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TRANSL. RESEARCH ORGANIZ. PERF. MODEL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>WEISS LOGIC MODEL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
What critics of impact assessment might say

- Influence funding particularly against ‘blue sky’ research
- Causality - did the research cause the impact?
- Attribution - to what extent did the research contribute to the impact?
- Timing – some impacts take decades to materialise
Critics of impact assessment might say...

1. **Favours applied rather than blue sky research**
 - Engage with other potential users along the pipeline. Basic science can utilise simulation modelling.

2. **It can be difficult to identify causality**
 - Impact assessment is not reason to abandon rigorous evaluation with appropriate study design (control group, randomisation, blinding).

3. **It may be difficult to define the extent of attribution**
 - Evidence base for attribution / scenario analysis / adjust claimed benefit in cost-benefit analysis

4. **Timing; impact may take more than a decade to materialise.**
 - Interim impacts/ longitudinal study design / follow up / simulation modelling with sensitivity analyses
HMRI

Framework to Assess the Impact from Translational health research

FAIT
HMRI Framework for Assessing the Impact from Translational Health-research

- Metrics (e.g. Modified Payback model)
- Economic analysis
- Case studies (Narrative of translation)
HMRI Framework for Assessing the Impact from Translational Health-research

- Domains includes: Knowledge generation, Clinical Implementation, Government Policy,
- Economic Impact
- Community Benefit and any other suitable views of benefit:
 - Module of process and output metrics – represent translational activities and behaviours.
 - The use of process metrics is set within a performance monitoring and management framework.
• Favours cost-benefit analysis, an economic metric, easily understood, can be based on actual data &/or ‘projected’ future values.
• CEA also provides information on value for money.
• Favoured by treasuries & increasingly philanthropy
HMRI Framework for Assessing the Impact from Translational Health-Research

- Metrics (e.g. Modified Payback model)
- Economic analysis
- (Narrative of translation)

- Good for complex and lengthy translation pathways
- Good for explaining serendipitous research outcomes
- Brings together quantitative results and explains them in context
HMRI Framework for Assessing the Impact from Translational Health-research

Logic map supports these methods

(Narrative of translation)
MODIFIED PROGRAM LOGIC MODEL

Participants lacking concentration → Improve concentration

- Check for dietary restrictions
 - Purchase food
 - Prepare food
 - Schedule a break
 - Serve food

- Cake
 - Fruit platter
 - Vegetable and cheese platter
 - Water, tea, coffee

Participants are fed → Tummy grumbles stop, blood sugar rises → Concentration improves

STAKEHOLDERS/END USERS (find out reasons for fidgeting, identify most appropriate food, eat the food) WHO MIGHT BE INTERESTED IN FUNDING THIS?

In partnership with our community
MODIFIED PROGRAM LOGIC MODEL

ISSUE
NEED

- Higher levels of CVD amongst Aboriginal and Torres Strait Islander populations than in the general population
- Greater burden of disease including morbidity and mortality

Aims
1. Understand what is working in this area amongst community healthcare centres
2. Use this information to increase use of CVRA to identify those at risk
3. Ensure those at risk receive early intervention to minimise risk of CVD

Activities
1. Examine variations in use of CVRA across Indigenous community health centres
2. Identify patient and health centre characteristics that are associated with this variation
3. Translate the findings so they can be used
4. Engage with stakeholders who can help increase implementation of CVRAs

Findings
- 1.95% of CVRAs were conducted in the Northern Territory
- 2. Health centre characteristics accounted for 70% of the variation
- 3. Government-run centres were 18.6 times more likely to record CVRA delivery than non-government-run centres
- 4. Decision support tools and a reporting process for CVRA delivery may assist

OUTPUTS from the research
- Peer reviewed journal publication
- Conference presentation
- Peak body meetings, newsletters, personal relationships, partnerships between NT services and others
- Policy brief? Guidelines? Develop personal relationships
- Community meetings, champions

OUTPUTS USED BY...
- Outputs used by: researchers and clinicians
- All eligible ATSI patients receiving a CVRA
- Outputs used by: non-government health services, services in other states
- All at risk patients receiving early intervention
- Outputs used by: policy makers
- Reduction in ATSI patients at risk of CVD, reduced hospitalisations
- Outputs used by: patients/community
- Reduction in morbidity and mortality from CVD

NARRATIVE – Describes the Research Pathway to Impact

Cost of this innovation = sum of resources used to obtain the above outcomes + the cost of using the research outcomes. This might include, for e.g., the additional cost of data collection.

Cost can be compared against benefit
Expressing the results from FAIT
<table>
<thead>
<tr>
<th>Method</th>
<th>Domain</th>
<th>Example of indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge translation</td>
<td>Number of attendees at a conference or workshop</td>
<td>Citation index for journal article</td>
</tr>
<tr>
<td>Clinical implementation</td>
<td>Increased delivery of cardiovascular risk assessments to Indigenous adults</td>
<td>Increased follow up with those at risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduced complications</td>
</tr>
<tr>
<td>Community benefit</td>
<td>Reduced cardiovascular morbidity amongst Indigenous adults</td>
<td>Wellbeing, measures of stress, etc.</td>
</tr>
<tr>
<td>Policy and legislation</td>
<td>Change in localised or state-based policy regarding regular delivery of CV risk assessments for Indigenous adults</td>
<td>Reduced hospitalisations of Indigenous adults for cardiovascular problems; reduced re-admissions, shorter LOS, reduced need for at home care, able to return to work / usual duties, increased GP consults, etc.</td>
</tr>
<tr>
<td>Economic impact</td>
<td>Reduced cardiovascular mortality amongst Indigenous adults</td>
<td>Projections of reduced CVD episodes, reduced hospitalisations and associated costs for the patient that can be avoided e.g. time off work</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Metric</th>
<th>Example of indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic assessment</td>
<td>Cost of research</td>
<td>Research budget</td>
</tr>
<tr>
<td></td>
<td>Cost of doing the CVD risk assessments and follow up</td>
<td>Estimated cost of implementation (increased GP consults, medications)</td>
</tr>
<tr>
<td></td>
<td>Benefit that can be converted into $ value</td>
<td>Projections of reduced CVD episodes, reduced hospitalisations and associated costs for the patient that can be avoided e.g. time off work</td>
</tr>
<tr>
<td></td>
<td>Cost:Benefit ratio</td>
<td>1:2.50 or for every $1 invested into the program, it delivered $2.50 of benefit.</td>
</tr>
<tr>
<td>Case studies</td>
<td>Narrative on community need, research response, research outcome, research impact</td>
<td></td>
</tr>
</tbody>
</table>
Thank you

Questions?
Workshop
Starting with the end in mind
Knowledge from this session

1. The need to logically link each aspect of the research from ‘demand for the research/service’ through to ‘impacts’

2. Set up a program logic model

3. Develop process, output and impact metrics to link aims with impacts

4. Prospectively think about: end-users and their engagement; how research is translated and how impacts are generated.
Some key questions

1. What is the demand for the research / service?
2. What does the research / service aim to do? (and will this address demand?)
3. What activities will be undertaken?
4. What are the outputs from those activities?
5. What is the cost of the research / service?
6. Who will use the research outputs?
7. If the outputs are used, what impacts are expected?

And, try to plan for your impact analysis at the start so that the correct data is collected
Some questions on demand to consider:

1. Is there baseline data? Existing literature/evidence about the problem?
2. The affected population(s): Where is the demand originating?
3. Nature of the demand (i.e. disease burden, gap in knowledge, lack of screening, lack of services, lack of training etc.)
4. Size of the problem: How many people are affected?
5. Severity of the problem: Is this a severe problem for a few OR is it a mild problem for many?
WHO NEEDS TO BE INVOLVED?

<table>
<thead>
<tr>
<th>STAKEHOLDERS</th>
<th>ENGAGED Y/N</th>
</tr>
</thead>
</table>

1. The definition of end user/stakeholder is broad. It includes other researchers, the health service, other providers, patients, communities, governments etc.

2. Think about your program and who needs to be involved

3. *Have you already engaged with your stakeholders? Yes / No*
AIMS OF YOUR PROGRAM

<table>
<thead>
<tr>
<th>No.</th>
<th>Aim</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Some questions to consider:

1. Review demand for your research/project. The aims should relate to this demand.
2. The aims articulate what your research project intends to supply to address that demand.
3. List up to 4 aims for your research project/program to address and write these on the separate sheets provided – only one aim per sheet
1. Review your aims, the activities you list here should directly relate to your aims.
2. You can have several activities to address each aim but list them on the same page as the aim they relate to.
3. At the end of each activity, nominate when it will be undertaken.
4. Think about how you will know (what evidence you can keep) that you have completed each activity.

<table>
<thead>
<tr>
<th>Activity</th>
<th>When?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANTICIPATED OUTPUTS FROM YOUR PROGRAM

<table>
<thead>
<tr>
<th>Output</th>
<th>End-user</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. For every listed aim, there should be at least one output, if not more.
2. An output is always something that someone else can use that is generated from your activity.
3. For each output nominate who the end user is.
1. Refer to your listed outputs and end users.
2. Conceptually, if the end user uses this output what benefit might be generated? Be specific.
3. Every output used by an end user should have a consequence or benefit.
4. How will you know if your outputs have had the desired impact?
5. Impacts are broad. They include:
 - Knowledge advancement (e.g. citation counts);
 - Clinical improvement (e.g. change in practice);
 - Community benefits (e.g. reduced burden from a particular disease);
 - Legislation & policy (e.g. new guidelines);
 - Economic (e.g. reduced waste, more efficient service)
1) Please tell us what the demand for your research project is?
2) Pick one of the aims and talk us through what the main activities, outputs, end users and impacts you are anticipating?
3) Was it useful to develop a program logic model?
4) What was challenging about the activity?
5) Do you think you will be able to use it to help you focus on research translation and impact?
6) Can you give us one example of data you will need to collect to provide evidence of impact?
THE END